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Performance Modeling and Evaluation of 
Distributed Deep Learning Frameworks on GPUs



Outline
 Evolution of CPUs and GPUs in the Last Decade

   
 Understanding the GPU Performance

 Efficient Convolutions in Deep Learning

  

 Analysis of Distributed Training of Deep Neural 
Networks

   
 Benchmarking Results on Distributed DL 
Frameworks
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Ecosystem of Deep Learning (DL)

DL 
Applications

DL Frameworks

DL

Hardware

Torch

2002

Theano
2011

Caffe

 2014

TensorFlow, CNTK, MXNet, Paddle, 
DSSTNE, Caffe2

Since 2015
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Cornerstone of Deep Learning: 
Computing
 Using Artificial Neural Networks as an example

A single neuron

A fully-connected neural networkDeep neural networks
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The Last Decade of Intel CPUs
 ～50x of peak performance boost:

 From ~40GFlops at 2006 to ~2000GFlops at 2017 (FP32)
Pe
ak
 G
Fl
op
s

Xeon Platinum 8180
28-cores, 2.5GHz,  AVX-512

Xeon X5355
4-cores, 2.66GHz, SSE3

# of cores: 7x
SIMD: 8x
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The Last Decade of Nvidia GPUs
 30x of peak performance boost, 17x more energy 
efficient:

 From ~500GFlops at 2006 to ~15TFlops at 2017 (FP32)

 From 128 cores to 5376 cores

GF
lo
ps

GeForce 
8800 GTX

Tesla P100
Tesla M40

Tesla K40

Tesla M2090
GTX 280

Tesla V100

When will be the 
end of Moore's 
law ?

90nm

65nm

12nm
16nm

28nm
28nm

40nm

10nm

7-8nm

5nm
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The Last Decade of Nvidia GPUs

Generation G80 GT200 Fermi Kepler Maxwell Pascal Volta

Example GeForce 
8800 GTX

GTX
280

Tesla 
M2090

Tesla K40 Tesla M40 Tesla 
P100

GTX 1080 Tesla
V100

FP32 Cores 128 240 512 2880 3072 3584 2560 5376

Peak FP32 
GFLOPs 518 933 1331 5040 6840 10600 8873 15000

Memory GDDR3 GDDR3 384-bit 
GDDR5

384-bit 
GDDR5

384-bit 
GDDR5

4096-bit 
HBM2

256-bit 
GDDR5X

4096-bit 
HBM2

Memory 
Bandwidth
(GB/sec)

57.6 141.7 177 288 288 549/732 320 900

TDP 155W 236W 225W 235W 250W 300W 180W 250W

2006 2008 2011 2013 2015 2016 2017

Memory bandwidth: only ~15x 
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Challenge in GPU Computing
 Big gap between processing capacity and memory 
access 

 Computing is fast: each core (ALU) can finish one or 
two operations per cycle

 1000 cores x 1GHz = 1TFlops

 But, one arithmetic operation requires two reads and one 
write 

 Memory as a bottleneck

 Long latency: hundreds of cycles to fetch data from 
DRAM

 Low memory bandwidth: 8.8TFlops vs. 320GB/s (Nvidia 
GTX1080)

Access global memory ALU Access global memory

time

Perspective from a single thread

ALU

400 cycles 20 cycles
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Solution 1: Multithreading
 Use multithreading to make the cores busy

 At least hundreds of thousands of threads

……

Access global memory ALU Access global memory

time

Perspective from multiple threads (for each multistage ALU pipeline)

ALU

ALU

ALU

ALU
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Solution 2: Memory Hierarchy

[Ref]  X. Mei and X.-W. Chu, “Dissecting GPU Memory Hierarchy through Microbenchmarking,” 
IEEE Transactions on Parallel and Distributed Systems,  Vol. 28. No. 1, pages 72-86,  Jan 2017. 

Regis
ters

L1 cache

on/off?

Shared memory 
controlled by 
programmer

L2 cache 
not controlled by 

programmer

Global memory
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Solution 3: 
High Bandwidth Memory (HBM)

[REF] https://www.amd.com/Documents/High-Bandwidth-Memory-HBM.pdf 
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Myth of GPU Performance
 A general question: what speedup can be 
achieved by GPUs (vs. CPU)?

 The speedup depends on many factors:
 What kind of CPU and GPU?

 The nature of the application
 Amdahl's law

 Compute-bounded or bandwidth-bounded

 How do you design the parallel algorithm?

 How do you optimize the CPU/GPU code?

Could be between 0.5x – 
300x

Hardware and software 
are equally important!
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Roofline Model: Preliminaries
 An insightful visual performance model that 
considers two major performance constraints:
 aggregated computational power of ALUs

 memory bandwidth 

 Operational intensity (OI): number of operations 
per byte of DRAM traffic. Assume single-precision 
operations,
 Dot product: z = xy, OI = 1/4

 Dense Matrix-vector multiply:  y = Ax, OI = 1/2

 Dense Matrix-matrix multiply: Cnxn = AnxnBnxn,  OI ϵ [1/4, n/6]

[Ref]  S. Williams, et al. “Roofline: An Insightful Visual Performance Model for Multicore 
Architectures,” Communications of the ACM, Vol. 52, No. 4, Apr 2009.

Given 8.8TFlops and 320GB/s, we need OI = 28 to fully utilize the 
GPU cores.
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A Simple Roofline Model: 
PERF = MIN(FP_PERF, DRAM_BW × OI)

Operational Intensity (Flops/Byte)

GF
lo
ps

Peak DP performance

Pe
ak
 S
tr
ea
m 
Ba
nd
wi
dt
h

75

Intel Xeon E5345
FP_PERF = 75GFlops, DRAM_BW = 10GB/s

Performance

1

1/16 1/8 81/4 1/2 1 2 4

Memory-
bounded

Compute-
bounded
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An Example of GPU Roofline Model

Operational Intensity (Flops/Byte)

Peak SP performance

Pea
k G

M B
and

wid
th

4600

Performance (GFlops)

1

1/16 1/8 81/4 1/2 1 2 4

10

NVIDIA GTX980
FP_PERF = 4600GFlops, DRAM_BW = 156GB/s

16 32

140

Pea
k S

M B
and

wid
th

64

Dense matrix multiply

Reduction, sparse operation, etc

FFT
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Deep Learning Software Tools
Torch Caffe CNTK MXNet TensorFlow PaddlePaddle PyTorch Caffe2

First 
Release

2002 2014 2015 2015 2015 2016 2016 2017

Authors
S. 

Chintala 
et al.

Yangqing 
Jia,

UC Berkeley
Microsoft DMLC Google Baidu Facebook

Yangqing 
Jia,

Facebook

Github
Follower

s
7496 21542 13248 12263 80253 5906 9746 6404

Major 
Version 
Updates

Github 
commits

 Sep 14, 1.0rc
 Feb 15, 1.0rc2
 Jan 16, 1.0rc3
 Jan 17, 1.0rc4
 Feb 17, 1.0rc5
 Apr 17, 1.0rel

 Dec 15, 1.0
 Apr 16, 1.1
 Jun 16, 1.5
 Jul 16, 1.6 
 Sep 16, 1.7
 Jun 17, 2.0
 Jul 17, 2.1
Sep 15, 2.2
Nov 22, 2.3

 Nov 15, 0.1
 May 16, 0.7
 Dec 16, 0.8
 Jan 17, 0.9.3
 May 17, 0.10
 Sep 6, 0.11
 Oct 31, 0.12

 Nov 15, 0.5
 …
 Jun 16, 0.9
 Sep 16, 0.10
 Nov 16, 0.11
 Dec 16, 0.12
 Feb 17, 1.0
 Apr 17, 1.1
 Jun 17, 1.2
 Aug 17, 1.3
 Oct 12, 1.4

Aug 16, 0.8b
Dec 16, 0.9
May 17, 0.10

 Sep 16, alpha
 Feb 17, 0.1.7
 Feb 17, 0.1.8
 Mar 17, 0.1.10
 Apr 17, 0.1.11
 May 17, 0.1.12
 Aug 17, 0.2.0
 Dec 5, 0.3.0

 Apr 17, 0.6
 Apr 17, 0.7
 Jul 17, 0.8
 Aug 17, 0.8.1
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Challenges for Deep Learning Practitioners
 How to choose hardware?

 Performance

 Cost

 Reliability

 How to choose software?

 Performance

 Usability

 Community support

 How to optimize performance?

We try to address the 
performance aspect.

• We have been working in GPU 
computing since 2008.

• We worked on a distributed deep 
learning project during 2014-15.
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Our Benchmarking Project
http://dlbench.comp.hkbu.edu.hk/ 
 Started at May 2016
 Core group members: SHI Shaohuai, WANG Qiang, XU Pengfei, 

WEI Lai

 Objectives
 To evaluate the running time performance of different 

deep learning software on different hardware platforms
 To identify performance bottleneck and propose solutions

 Features
 Reproducible results: open-source at 

https://github.com/hclhkbu/dlbench 
 To be as fair as possible: reviewed by the community
 Long-term: keep updating the software version and new 

hardware
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Our Work in the 1.5 Year

Tested Software

• Caffe, Caffe-MPI

• CNTK

• TensorFlow

• Torch

• MXNet

Tested Hardware:

•CPUs: Intel CPU i7-3820, 
Intel Xeon E5-2630v4

•GPUs: Nvidia GTX980, 
GTX1080, GTX Titan X 
Pascal, Tesla K80, Tesla 
P40, Tesla P100

•A node with multiple GPUs

•Small GPU clusters

Tested Networks

• Fully-connected 
neural networks

• CNN: AlexNet, 
GoogLeNet, ResNet

• RNN: LSTM

Tested Data 
Sets

•Synthetic Data

•MNIST

•CIFAR10

•ImageNet
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Key Operations in Deep Neural Networks
 Convolution layer: convolution 
operation

 Three popular implementations

 Fully-connected layer: matrix 
multiplication[Ref 1] S. Chetlur, et al, cuDNN: Efficient 

Primitives for Deep Learning, arXiv 2014

[Ref 2] N. Vasilache, et al, Fast Convolutional 
Nets With fbfft: A GPU Performance Evaluation, 
ICLR 2015

[Ref 3] A. Lavin and S. Gray, Fast Algorithms for 
Convolutional Neural Networks, CVPR 2016 
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Understanding Convolution

Sobel filter

Image source: 
wikipedia.org 

But, the design of convolution kernels (feature engineering) is very difficult.

Convolutional neural networks: learn a set of kernels automatically from training data.
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An Example of 2D Convolution

1 2

5 6

1 2 3 4

5 6 7

9 10 11 12

13 14 15 16

4x4 
input

2x2 kernel

66 80 94

122 136 150

178 192 206

3x3 
output

8

Element-wise 
Multiplication
& Summation
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Three Implementations of Convolution
 Conventional matrix-multiplication based
 Well-known in signal processing
 Simple to understand and implement

 Discrete Fourier Transform
 Convolution theorem: a convolution of two discrete 

signals can be performed by multiplication in the 
frequency domain

 Rely on efficient implementations of FFT
 Very efficient for medium and large kernels

 Winograd’s minimal filtering algorithm
 Originally proposed in 1960’s – 1980’s, applied to 

DNN in 2016
 Very efficient for small kernels
 FPGA solutions are available now
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Matrix-Multiplication based Convolution

1 2
3 4

1 2 3

4 5 6

7 8 9

3x3 
input

2x2 kernel

37 47

67 77

2x2 
output

Re-arrange data structure with necessary data 
repetition.

1 2 3 4

1 2 4

2 3 5

4 5 7

5

6

8

5 6 8 9

Toeplitz 
Matrix

37 47 67 77
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Matrix-Multiplication based Convolution

1 2 3

4 5 6

7 8 9

1 2

3 4

Output

1 2
3 4

1 2
3 4

Kernel 1

Kernel 
2

Channel 1 Channel 2

1 2 3

4 5 6

7 8 9

Channel 
1

Channel 2

Input Channels

1 2

3 4

Map 1

Map 2

1 2
3 4

1 2
3 4

Kernel 
3

1 2

3 4
Map 3

1 2
3 4

1 2
3 4
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Matrix-Multiplication based Convolution

Output

1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4

Channel 1 Channel 2

Channel 1

Channel 2

Input Channels

1 2 3 4

1 2 3 4

Map 1

Map 2

1 2 4

2 3 5

4 5 7

5

6

8

5 6 8 9

1 2 4

2 3 5

4 5 7

5

6

8

5 6 8 9

1 2 3 4 1 2 3 4
1 2 3 4 Map 3

q   The computational complexity is the same as straightforward 

convolution

q   Benefit from existing high-performance GEMM library

§ Traditional CPU (multi-threading): OpenBLAS, Intel MKL, etc

§ GPU : cuBLAS, cuDNN, etc

Kernel 1

Kernel 
2
Kernel 
3
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Fast Fourier Transform (FFT) based 
Convolution

kerne
l

Hk image

 Wk

Hi FFT kernel

Wi

Expansion &
Direct FFT

output map

Inverse FFT

image

Direct FFT

Wi

Hi

Wi

Hi

Wo

FFT output map

Ho

Wo

Ho
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Fast Fourier Transform (FFT) based 
Convolution

[REF] 
1. Podlozhnyuk, Victor. "FFT-based 2D convolution." NVIDIA white paper (2007).
2. Mathieu, Michael, Mikael Henaff, and Yann LeCun. "Fast training of convolutional networks through FFTs." 

arXiv:1312.5851 (2013).
3. N. Vasilache, et al, Fast Convolutional Nets With fbfft: A GPU Performance Evaluation, ICLR 2015.
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Winograd-based Convolution
 Reduce the number of multiplication operations

 E.g., in 1D convolution

6 multiplications + 4 
additions

4 multiplications + 12 
additions

[REF] Lavin, Andrew, and Scott Gray. "Fast algorithms for convolutional neural networks." 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.

In 2D convolution F(2x2, 
3x3):
36 muls  16 muls
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Importance of Performance Modeling
 to understand the overall performance

 to identify the performance bottleneck

 to optimize the software

 which platform or library?

 to optimize the hardware

 CPU, GPU, storage, network
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Mini-batch SGD
 1) Read a mini-batch of data from disk to 
memory:  tio

 2) Transfer the data from the CPU memory to the 
GPU memory: th2d 

 3) Feed forward operation: tf
 4) Backward propagation: tb
 5) Update model parameters: tu

titer = tio + th2d + tf + tb + tu 
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Multiple GPUs: Synchronous SGD

titer = tio + th2d + tf + tb + tu + tcomm

= tio + tgpu + tcomm
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Optimization Opportunities
 I/O time tio:

 tio depends on training data size, storage system 
(HDD, SSD, RAID, NFS), data format (compressed or 
not?), CPU 

 Use multi-threading to overlap tio with the previous 
titer

 Communication time tcomm:

 In the backword propagation, the gradient 
communications of layer i can be overlapped with 
the gradient computations of layer i-1Since the GPU speed grows much faster than IO and 
network, tio and tcomm become more important in performance 
optimization.
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Speedup Analysis
 If communication time can be hidden by 
computing time

SPEEDUP = 

 Otherwise:
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Different Optimization Strategies
 CNTK 2.0

 Use non-pageable memory to reduce th2d

 Use Nvidia NCCL for all-reduce communication

 Backward propagation is not pipelined with gradient 
aggregation

 MXNet

 Backward propagation is pipelined with gradient 
aggregation

 TensorFlow

 Supports both PS mode and all-reduce mode

 Caffe-MPI

 Use non-pageable memory to reduce th2d
 Use Nvidia NCCL 2.0 for all-reduce communication

 Backward propagation is pipelined with gradient 
aggregation 
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Our Testbed

Each node has 4 Nvidia Tesla P40 cards

The cluster has 4 nodes
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DL Frameworks and Networks

DL Software Version cuDNN

Caffe-MPI 2.0 v6

CNTK 2.0 v6

MXNet 0.10.0 v6

TensorFlow 1.2.1 v6
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Single GPU Performance

AlexNet ResNet-50

Batch size = 1024 Batch size = 32
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Multiple-GPU Benchmarking Results

In our test, the batch size is proportional to the number of GPUs.
So when using more GPUs, the IO performance becomes a bottleneck on AlexNet.
PCIe communication time is less than 0.1 second, and can overlap with computation.

Batch size = 1024/2048/4096Batch size = 128/256/512 Batch size = 32/64/128
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Cluster Benchmarking Results

In a GPU cluster, the network communication may significantly affect the speedup.

It is important to overlap network communications with gradient calculations.
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Conclusion
 For single GPU, it is important to understand the 
performance of different implementations of convolution

 For multiple GPUs within a single node, synchronous SGD 
in general works well with 4 GPU cards
 Scalability could be limited by disk I/O performance

 For GPU cluster, the scalability can be limited by 
network performance
 Try to overlap the communication time with computing time 

layer by layer
 Try Nvidia NCCL 2.0
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[Ref] S. Shi and X.-W. Chu, “Performance Modeling and Evaluation of
Distributed Deep Learning Frameworks on GPUs,” arXiv:1711.05979 .
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